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Abstract. Reaction Systems (RSs) were introduced in the area of natu-
ral computing as a qualitative model inspired by biological systems. In a
RS, each reaction is a collection of reactants that lead to some products
unless the reaction inhibitors are present. We propose a method to ana-
lyze the attractors of a RS model (states on which the system converges)
and to identify entities that are responsible for their achievement. Our
approach is based on (i) the construction of a Labeled Transition Sys-
tem (LTS) based on a formal semantics of RSs, and (ii) the application
of a slicing method to the trajectories in the LTS. Our model analysis
provides new knowledge with respect to previous studies. We illustrate
our general method on a case study. We show that it allows us to iden-
tify combinations of stimuli that lead to each phenotype, but also which
proteins inside T cells are involved in each case. These results allow for
a better understanding of the phenomenon and for the identification of
drug targets in the case of diseases.
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1 Introduction

Reaction Systems (RSs) [16, 17] are a successful (rewriting) computational frame-
work inspired by biochemical systems. They are a rather general and versatile
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framework for the construction of qualitative models in which the number of
modelled entities (e.g., molecules) is abstracted away.

A RS is composed by a finite set of reactions, and in turn a reaction is a triple
(R, I, P ), where R, I, P are finite, non-empty sets of entities over a fixed finite
set S called background set. A computation in a RS starts from an initial state
(a finite set of entities) and repeatedly derive new entities by applying at each
step all of the reactions to the current state. Each reaction (R, I, P ) contributes
to the new state only if all entities in R (the reactants) and no element in I (the
inhibitors) are present in the current state. If these two conditions are satisfied,
the set P (the products) is included in the next state.

The union of the contributions of all reactions determines the new state. RSs
are an interactive model of computation. An ordered sequence of states (sets of
entities) called context sequence can be defined and then state i in a computation
will be determined by the result of the application of the reactions to the previous
state, together with the set of entities in the i-th set of the context sequence.

In this paper we propose a methodology, based on an operational semantics
we defined in [11], to analyze the attractors of a RS model (the set of states on
which the system converges) and to identify biological entities that are responsi-
ble for their achievement. Our method starts by computing a Labeled Transition
System (LTS) describing all the possibile behaviours of the RS model, and then
continues with the application of an automated methodology, called slicing, de-
fined in [12], to simplify the trajectories described by the LTS.

We apply our approach to a case study. Thus, we show how to analyze a model
of T cell differentiation in the immune system. This model includes reactions that
allow T cells to exhibit different phenotypes on the basis of the environmental
stimuli. We show that the analysis of this model provides new knowledge with
respect to previous studies. In fact, it allows us to determine which combinations
of stimuli lead to each phenotype, but also which proteins inside T cells are
involved in each case.

We use several tools in our approach. First we use BioReSolve, a freely avail-
able tool4 that we have previously developed, which implements RSs in SWI-
Prolog. It also implements a slicing analysis method. In order to develop the anal-
ysis of attractors we have designed and implemented a new python script which
exploits the package networkx. Our script interacts with BioReSolve through
the Python-to-Prolog binding provided by the Python swiplserver package.

The steps of our methods are as follows: we start by using BioReSolve to run
our RS model obtained by an automatic translation from the Boolean network
to the corresponding RS. We add the contexts which are necessary to start a
computation in BioReSolve by considering a non-deterministic context which
provides all combinations of entities/stimuli as different initial alternatives. The
computation proceeds in each path by repeating the same initial context (of
the path) until we reach a loop in the computation graph. BioReSolve returns
a representation of the LTS as a graph in dot format, which is then loaded by
our Python script. Our Python script performs an analysis of the attractors

4 http://pages.di.unipi.it/bruni/LTSRS/.
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by considering different targets corresponding to the different combinations of
phenotypes that a T cell can express. The slicing tool (which performs a sort of
causality analysis) is used to simplify the computation traces by leaving only the
information which is relevant for producing a target of our analysis. This allows
us to discover some relevant facts, for instance: which genes are necessary for
the expression of one of the target transcription factors.

Our methodology is general, and hence it could be applied to many other case
studies, such as the ones in the public data base Cell Collective [1] which con-
tains our current case study. Moreover, our methodology introduces an original
analysis of attractors combined with a slicing algorithm which provides a deeper
understanding of the evolution of the system and the entities involved. This can
have a significant impact in drug design, since understanding which genes are
necessary or, more generally, contribute to the expression of some other genes
or transcription factors involved in a disease can be helpful for the identification
of potential drugs or vaccine targets.
Related work: This paper contributes to the research in computational modelling
and analysis of gene regulatory networks [20, 6]. In particular, the attractors and
slicing analyses, combined together, constitute a new methodology for the in-
vestigation of causality properties in such networks. Causality properties can
be studied by running simulations [22, 26], to investigate the role of initial con-
figurations of active genes and identify attractors. Moreover, formal causality
approaches have been investigated for biological applications in [15, 7], and in
particular for RSs in [4]. Compared to these approaches, ours provides informa-
tion about the role of both the environmental stimuli (or the “input” nodes of
the networks) and the intermediate genes involved in the achievement of a given
target, computed in an integrated way and with scalable performances.
Structure of the paper: in Sect. 2, we present the basic framework of RSs and the
slicing algorithm. Then, Sect. 3 presents the implementation of our methodology.
In Sect. 4 we define the RS model of T cell differentiation whose analysis is
described in Sect. 5. We draw some conclusions and future work in Sect. 6.

2 Reaction Systems and Slicing Analysis

In this section we recall background notions about the Reaction Systems, as well
as the definition of a SOS semantics and of a slicing analysis method.

2.1 Reaction Systems

The theory of Reaction Systems (RSs) [9] was born in the field of natural com-
puting to model the qualitative behavior of biochemical reactions in living cells.
We recall here the main concepts and we use the term entities to denote generic
molecular substances (e.g., atoms, ions, molecules) that may be present in the
states of a biochemical system.

Let S be a finite set of entities, a reaction in S is a triple r = (R, I, P ),
where R, I, P ⊆ S are non empty sets and R ∩ I = ∅. The sets R, I, P are the
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reactants, inhibitors, and products, respectively. All reactants have to be present
in the current state for the reaction to take place. The presence of any of the
inhibitors blocks the reaction. Products are the outcome of the reaction, to be
released in the next state. We denote with rac(S) the set of all reactions over S.
Given W ⊆ S, the result of r = (R, I, P ) ∈ rac(S) on W , denoted by resr(W ),
is defined as follows, where enr(W ) is called the enabling predicate:

resr(W ) ,

{
P if enr(W )
∅ otherwise enr(W ) , R ⊆W ∧ I ∩W = ∅

A Reaction System is a pair A = (S,A) where S is the set of entities, and
A ⊆ rac(S) is a finite set of reactions over S. Given W ⊆ S, the result of the
reactions A on W , denoted resA(W ), is resA(W ) , ∪r∈Aresr(W ).

Since living cells can react to environmental stimuli, the behavior of a RS
A = (S,A) is formalized as an interactive process. An n-step interactive process
in A, with n ≥ 0, is a pair π = (γ, δ) s.t. γ = {Ci}i∈[0,n] is the context sequence
and δ = {Di}i∈[0,n] is the result sequence, where Ci, Di ⊆ S for i ∈ [0, n], D0 = ∅,
and Di+1 = resA(Di ∪ Ci) for i ∈ [0, n− 1]. The context sequence γ represents
the environment, while the result sequence δ is determined by γ and A. We call
τ =W0, . . . ,Wn the state sequence, with Wi , Ci ∪Di for i ∈ [0, n].

Example 1. We consider a toy RS defined as A , (S,A) where S , {a, b, c},
and the set A , {r1} only contains the reaction r1 , ({a, b}, {c}, {b}) (written
as (ab, c, b)). Then, we consider a 4−steps interactive process π , (γ, δ), where
γ , {C0, C1, C2, C3}, with C0 , {a, b}, C1 , {a}, C2 , {c}, and C3 , {c}; and
δ , {D0, D1, D2, D3}, with D0 , ∅, D1 , {b}, D2 , {b}, and D3 , ∅. Then,
the resulting state sequence is τ =W0,W1,W2,W3 = {a, b}, {a, b}, {b, c}, {c}. In
fact, it is easy to check that, e.g.,W0 = C0,D1 = resA(W0) = resA({a, b}) = {b}
because enr1(W0), and W1 = C1 ∪D1 = {a} ∪ {b} = {a, b}.

2.2 SOS Rules for Reaction Systems

Our methodology exploits the algebraic syntax and the formal semantics for RSs
introduced in [11]. As in process algebras such as CCS [25], SOS inference rules
define the behavior of each operator. This induces a LTS semantics for RSs,
where states are terms of the algebra, transitions correspond to steps of the RS,
and their labels retain information on the entities needed to perform each step.

Definition 1 (RS processes). Let S be a set of entities. A RS process P is
any term defined by the following grammar:

P := [M] M := (R, I, P ) | D | K | M|M K ::= 0 | X | C.K | K+ K | rec X. K

where R, I, P, C,D ⊆ S, R, I, P 6= ∅, and X is a process variable.

A RS process P embeds a mixture processM obtained as the parallel composition
of some reactions (R, I, P ), some set of current entities D (possibly the empty
set), and some context K. We write

∏
i∈BMi for the parallel composition of
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all Mi with i ∈ B. A context process K is a possibly non-deterministic and
recursive system: the nil context 0 stops the computation; the prefixed context
C.K makes the entities C available to the reactions, and then leaves K be the
context offered at the next step; the non-deterministic choice K1+K2 allows the
context to behave as either K1 or K2; X is a process variable, and rec X. K is
the usual recursive operator of process algebras.

We say that P and P′ are structurally equivalent, written P ≡ P′, when they
denote the same term up to the laws of commutative monoids (unit, associativity
and commutativity) for parallel composition ·|·, with ∅ as the unit, and the laws
of idempotent and commutative monoids for choice ·+ ·, with 0 as the unit. We
also assume D1|D2 ≡ D1 ∪D2 for any D1, D2 ⊆ S.

Definition 2 (RSs as RS processes). Let A = (S,A) be a RS, and π = (γ, δ)
an n-step interactive process in A, with γ = {Ci}i∈[0,n] and δ = {Di}i∈[0,n]. For
any step i ∈ [0, n], the corresponding RS process JA, πKi is defined as follows:

JA, πKi ,

[∏
r∈A

r | Di | Kγi

]
where Kγi , Ci.Ci+1. · · · .Cn.0 is the serialization of the entities offered by γi
(the shifting of γ at the i-th step). We write JA, πK as a shorthand for JA, πK0.

Example 2. The encoding of the RS A = (S,A), in Example 1, is as follows:

P , JA, πK = J({a, b, c}, {(ab, c, b)}), πK = [(ab, c, b) | ∅ | Kγ ] ≡ [(ab, c, b) | Kγ ]

where Kγ = {a, b}.{a}.{c}.{c}.0 (written as ab.a.c.c.0), and D0 = ∅ can be
discarded thanks to structural congruence.

A transition label ` is a tuple 〈(D,C) B R, I, P 〉 with D,C,R, I, P ⊆ S. The
sets D,C record the entities currently in the system; R records entities whose
presence is assumed (acting as reactants or as inhibitors); I records entities whose
absence is assumed (acting as inhibitors or as missing reactants); P records the
products of enabled reactions.

The operational semantics of RS processes is defined by the SOS rules in
Fig. 1. Process 0 does nothing. Rule (Ent) makes available the entities in the
(possibly empty) set D, then reduces to ∅. In rule (Cxt), a prefixed context
process C.K makes available the entities in C and then reduces to K. (Rec) is the
classical rule for recursion. Rules (Suml) and (Sumr) select a move of either the
left or the right component, resp., discarding the other one. Rule (Pro) executes
the reaction (R, I, P ) (its reactants, inhibitors, and products are recorded in
the label), and remains available at the next step together with P . Rule (Inh)
applies if the reaction (R, I, P ) can not be executed; the label records the causes
that disable the reaction: some inhibitors (J ⊆ I) are present or some reactants
(Q ⊆ R) are missing, with J ∪ Q 6= ∅. The rule (Par) puts two processes in
parallel by joining all the set components of the labels. The check `1 _ `2
guarantees that reactants and inhibitors are consistent (we let Wi , Di ∪ Ci):

〈(D1, C1) B R1, I1, P1〉_ 〈(D2, C2) B R2, I2, P2〉 , (W1∪W2∪R1∪R2)∩ (I1∪I2) = ∅
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D
〈(D,∅)B∅,∅,∅〉−−−−−−−−−−→ ∅

(Ent)
C.K

〈(∅,C)B∅,∅,∅〉−−−−−−−−−−→ K

(Cxt)

K1
`−→ K′1

K1 + K2
`−→ K′1

(Suml)
K2

`−→ K′2

K1 + K2
`−→ K′2

(Sumr)
K[recX.K/X ]

`−→ K′

rec X. K
`−→ K′

(Rec)

(R, I, P )
〈(∅,∅)BR,I,P〉−−−−−−−−−−→ (R, I, P ) |P

(Pro)
J ⊆ I Q ⊆ R J ∪Q 6= ∅

(R, I, P )
〈(∅,∅)BJ,Q,∅〉−−−−−−−−−−→ (R, I, P )

(Inh)

M1
`1−−→ M′1 M2

`2−−→ M′2 `1 _ `2

M1 | M2
`1∪`2−−−−→ M′1 | M

′
2

(Par)
M
〈(D,C)BR,I,P〉−−−−−−−−−−−→ M′ R ⊆ D ∪ C

[M]
〈(D,C)BR,I,P〉−−−−−−−−−−−→ [M′]

(Sys)

Fig. 1: SOS semantics of the RS processes.

In the conclusion of rule (Par) `1 ∪ `2 stands for the component-wise union of
labels (see definition below, where the notation X1,2 , X1 ∪X2 is used):

〈(D1, C1) B R1, I1, P1〉 ∪ 〈(D2, C2) B R2, I2, P2〉 , 〈(D1,2, C1,2) B R1,2, I1,2, P1,2〉

Rule (Sys) requires that all the processes of the system have been considered,
and checks that all the needed reactants are available in the system (R ⊆ D∪C).

Example 3. The RS process P0 , [(ab, c, b) | ab.a.c.c.0] from Example 2, and its
next state P1 have a unique outgoing transition:

[(ab, c, b) | ab.a.c.c.0] 〈(∅,ab)Bab,c,b〉−−−−−−−−−→ [(ab, c, b) | b | a.c.c.0] 〈b,aBab,c,b〉−−−−−−−→ [(ab, c, b) | b | c.c.0]

From P2 = [(ab, c, b) | b | c.c.0], three transitions lead to the same state P3 ,
[(ab, c, b) | c.0], each with a different cause why reaction (ab, c, b) is not enabled:

1. P2
〈(b,c)Bc,∅,∅〉−−−−−−−−→ P3 the presence of c inhibits the reaction;

2. P2
〈(b,c)B∅,a,∅〉−−−−−−−−→ P3 the absence of a inhibits the reaction;

3. P2
〈(b,c)Bc,a,∅〉−−−−−−−−→ P3 this label summarizes the two previous ones.

From now on, we assume transitions P
〈(D,C)BR,I,P 〉−−−−−−−−−−→ P′ to maximize the sets

J and Q in applying rule (Inh) (see [11]). In [11], Theorem 19, we have shown
that the set-theoretic dynamics of a RS matches the SOS semantics of its RS
process.

2.3 Attractors

In biological systems, attractors depict an equilibrium dynamics where a finite
set of states repeats infinitely in an ordered manner. Thus, in RSs an attractor is
defined as a cyclic set of states, whose behaviour is repeated identically forever
or until an external condition changes and differently stimulates the system. The
number of states composing an attractor defines its size.
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2.4 SOS Rules for a Slicing Computation

A slicing computation, presented in the next subsection, needs a slightly different
state configuration that includes the whole past state sequence Wi = Ci ∪ Di.
To do that, we add as a prefix to the state configuration [M] the list of the pre-
vious result and context sets, written (D,C)[M], where (D,C) stands for the list
(D0, C0), . . . , (Dn, Cn). Definition 1 is thus updated to carry on such a history.

Definition 3 (RS processes with history). Let A = (S,A) be a RS, and π =
(γ, δ) an n-step interactive process in A, with γ = {Ci}i∈[0,n] and δ = {Di}i∈[0,n].
For any step i ∈ [0, n], the new process configuration JA, πKi is defined as:

JA, πKi , (D,C)[M]

where (D,C) ≡ (D0, C0), . . . , (Di−1, Ci−1), and, [M] =
[∏

r∈A r | Di | Kγi

]
.

The next step consists in enriching the operational semantics to deal with the
history. We only have to modify the (Sys) inference rule in Figure 1 as follows:

M
〈(D,C)BR,I,P 〉−−−−−−−−−−→ M′ R ⊆ D ∪ C

(D,C)[M]
〈(D,C)BR,I,P 〉−−−−−−−−−−→ (D,C) :: (D,C)[M′]

(HistSys)

where, given the history (D,C) = (D0, C0), . . . , (Di−1, Ci−1), we let the notation
(D,C) :: (D,C) stand for the history (D0, C0), . . . , (Di−1, Ci−1), (D,C).

2.5 Slicing RS Computations

In the context of programming, dynamic slicing is a technique that helps a user to
debug a program by simplifying a partial execution trace, by pruning parts which
are irrelevant and highlighting parts of the program which have been wrongly
ignored during execution. Our slicing technique for RSs is defined in [12]. We
resume it here. The technique consists of three steps.

Enriched Semantics (Step S1). The slicing process requires some extra
information from the execution of the processes. More precisely, (1) at each
operational step we need to highlight the reactions that have been applied; and
(2) we need to determine the part of the context which adds to the previous state
the entities which are necessary to produce the marked entities in the following
state. For solving (1) and (2), in Section 2.4 we have introduced an enriched
semantics that records computation sequences. We need to keep track of the
state sequence of the computation for the slicing process, by keeping separated
the produced entities Di in a computation step from the context Ci.

Marking the state (Step S2). Let the final configuration in a partial
computation be (Dm, Cm). The user (or a logical formula expressed by a mon-
itor [12]) selects a subset Dsliced ⊆ Dm that may explain the behavior of the
program.

Trace Slice (Step S3). Starting from the pair (Dsliced , Cm) denoting the
user’s (or monitor) marking, we get a slicing step deleting from the execution
trace all information not related to Dsliced .
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Input: - a trace (D0, C0)
N1−−→ · · · Nm−−−→ (Dm, Cm)

- a marking Dsliced ⊆ Dm

Output: a sliced trace (D′0, C
′
0)

N′1−−→ · · ·
N′m−−−→ (Dsliced , Cm)

1 begin
2 let D′m = Dsliced

3 for i = m to 1 do
4 let D′i−1 = ∅ ∧ C′i−1 = ∅ ∧N ′i = ∅
5 for j ∈ Ni where rj = (Rj , Ij , Pj), such that (D′i ∩ Pj 6= ∅) do
6 let N ′i = N ′i ∪ {j}
7 if ¬enrj

(Di−1), then
C′i−1 = C′i−1 ∪ (Rj\Di−1) ∧D′i−1 = D′i−1 ∪ {Rj ∩Di−1}

8 else D′i−1 = D′i−1 ∪ Rj

9 end
10 end
11 end

Algorithm 1: Trace Slicer

Marking algorithm. Let us now explain how the slicing Algorithm 1
works. We assume that the reactions are numbered consecutively by positive
integer numbers, and denote the j-th reaction in the RS by the notation rj .
Please notice also that each history (D0, C0) :: · · · :: (Dm, Cm) computed in m
steps by Definition 3, defines a trace (D0, C0)

N1−−→ · · · Nm−−→ (Dm, Cm) on which
we perform the slicing computation, where Ni is the set of reactions applied
in the i-th computation step. Here, each reaction is represented by its numeric
position in the list of reactions, i.e., Ni = {j | enrj (Di−1 ∪ Ci−1)} for any
i ∈ [1,m]. Abusing the notation, we write rj ∈ N whenever j ∈ N .

Our algorithm returns a sliced trace which contains only the (usually small)
subset of the entities which are necessary for deriving the marked entities. Let
us consider the more complex case of context dependent computations. First of
all the user (or a logic formula expressed by a monitor [12]) has to indicate the
subset Dsliced of the entities in the last state of the computation Dm that she
wants to mark. Then the backward slicing process can start. Now, let us consider
the iteration i of the slicer. Marking the relevant information in previous state
(Di−1, Ci−1) requires analyzing the rules which have been applied at step i− 1.
So, if rj ∈ Ni−1 and rj = (Rj , Ij , Pj), we need to check if rj produces at least
one entity which is marked in the next state. If this is the case, j is added to
the set of marked rules. Then, it is necessary to check if the context Ci−1 was
essential for applying rule rj , or if all necessary entities were already included in
Di−1. Thus, it is necessary to compute the entities in Ci−1 which are missing in
Di−1 in order for rule rj to be enabled, and those entities are marked in (added
to) context C ′i−1. The elements in Rj are added to the marked entities in D′i−1.

3 Implementation of the Analyzer

BioReSolve, a tool implementing the SOS semantics of RSs and the slicing anal-
ysis methods described in the previous section, is publicly available [2] with open
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source license5. It has been developed in SWI-Prolog [3] by some of the authors
of this paper, by following the specifications given in [10] and [12].

For the sake of application of the method to the analysis of gene regulatory
networks, we interact with BioReSolve by a Python script that makes it possible
(i) to exploit Python packages such as networkx to process the LTS generated by
BioReSolve in order to identify attractors, and then (ii) to automatize the execu-
tion of the slicing analysis method for several gene targets and LTS states. The
interaction is made possibile by the usage of the swiplserver Python package
that allows SWI-Prolog code to be executed by invoking Python functions.

More precisely, the Python script performs the following steps:

1. it loads an LTS generated by BioReSolve in dot format and uses it to create
a networkx DiGraph object;

2. it initializes the list of targets of the analysis as a list of objects of a class
Target with two fields, present and absent, denoting the genes that have
to be expressed and non expressed, respectively, in the states of attractors
that have to be considered as target;

3. it defines a few functions that will be used during the attractor analysis:
– function check_node(node) checks whether the LTS state node belongs

to an attractor of the LTS (i.e., it is in a cycle);
– function compute_attractor(node) returns the list of genes that are

present in states of the attractor reachable from state node6;
– function target_computations(target) selects the LTS traces that

lead to attractors in target target, and for each of them it provides
a description of the corresponding context sequences;

4. it executes the main loop that, for every target to be investigated, invokes the
target_computation function and then for every state of every attractor of
such a target, asks BioReSolve to compute the sliced computation leading to
that state. Entities mentioned in a sliced computation are then collected in
a set representing the entities that actually played a role for the presence of
the target genes in the attractor. Finally, the set of entities obtained for each
target are used to compute two results: the union of all of them (representing
those entities that may play a role to achieve the target) and the intersection
of all of them (representing those entities that must play a role).

The Python script we developed as well as the BioReSolve specification of the
RS model we will investigate in this paper is freely available at [2].

4 RS Model of T Cell Differentiation

In this section we define the RS model of T cell differentiation on which we
demonstrate our attractor and slicing analyses. The model is based on a Boolean
network model developed in [26].
5 http://pages.di.unipi.it/bruni/LTSRS/.
6 We will show that the LTS for the analysis described in this paper are such that
every state, apart from the initial one, leads to exactly one attractor.
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Fig. 2: Graphical representation of the Boolean network model of T Cell differ-
entiation from [26]. Available in electronic format at [1].

4.1 The Boolean network model

T cell differentiation is a widely studied biological phenomenon for which sev-
eral Boolean network models have been proposed [27, 28, 26]. We considered the
model investigated in [26] and available on CellCollective [18]. The analysis per-
formed in [26] is based on the simulation method provided by such a platform.

We choose this model since it describes a realistic regulation system that is
involved in many diseases [21, 19, 24] and it has been investigated under both the
viewpoints of causality (effect of environmental conditions) and of reachability
(reachable phenotypes). The Boolean network model is graphically represented
as shown in Fig.2 and is fully specified by the Boolean update formulas shown
in Fig.3. It includes 9 input nodes (orange), that correspond to stimuli that
the T cell can receive by the external environment. Then, it contains 23 nodes
representing relevant T cell genes, and 6 nodes representing secreted cytokines.

T cells can differentiate by expressing four different phenotypes, denoted Th1,
Th2, Th17 and iTreg. Such phenotypes correspond to the expression of four dif-
ferent trancription factors included in the model: Tbet (for Th1), GATA3 (for
Th2), RORgt (for Th17) and Foxp3 (for iTreg). There exists experimental ev-
idence that a T cell can express more than one phenotype (hence, more than
one of the associated transcription factors) [23]. Moreover, through the compu-
tational analysis performed in [26], the authors hypothesize that T cells may
express also other combinations of phenotypes, that might include three or even
four of them. Finally, the case in which none of the four relevant transcription
factors is expressed (i.e. no phenotype) is denoted as Th0.

4.2 The RS Model

Translating a Boolean network model into an equivalent RS can be done by
turning every Boolean formula of the network into disjunctive normal form.
Then, every term of the disjunction (which is a conjunction of atoms, possibly
negated) is translated into a reaction in which (i) reactants are the positive
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Jak1 = IFNgR and not SOCS1
IL21 = STAT3 and NFAT

IL18R = IL18 and IL12 and not STAT6
SOCS1 = STAT1 or Tbet

IL6 = RORgt
STAT5 = IL2R
IL17 = (RORgt and not STAT1)

or (STAT3 and IL17 and IL23R and not STAT1 and not STAT5)
STAT4 = IL12R and IL12 and not GATA3
IFNgR = (IFNg_e and NFAT) or (IFNg and NFAT)
STAT6 = IL4R and not IFNg and not SOCS1
GATA3 = (STAT6 and NFAT and not TGFb and not RORgt and not Foxp3

and not Tbet) or (GATA3 and not Tbet)
or (STAT5 and not TGFb and not RORgt and not Foxp3 and not Tbet)

IL4 = GATA3 and NFAT and not STAT1
NFkB = IRAK and not Foxp3
IL2 = NFAT and NFkB and not Tbet

IL23R = (IL23 and STAT3 and not Tbet) or STAT3
Tbet = (STAT4 and not RORgt and not Foxp3)

or (STAT1 and not RORgt and not Foxp3)
or (Tbet and not IL12 and not IFNg and not RORgt and not Foxp3)

TGFbR = TGFb and NFAT
RORgt = TGFbR and ((STAT3 and IL21R) or (STAT3 and IL6R)) and not Tbet

and not GATA3 and not Foxp3
IL6R = IL6 or IL6_e

IL21R = IL21
Foxp3 = (TGFbR and not (IL6R and STAT3) and not IL21R and not GATA3)

or (STAT5 and not (IL6R and STAT3) and not IL21R and not GATA3)
IRAK = IL18R

IL12R = (IL12 and NFAT) or (STAT4 and not GATA3) or Tbet or (TCR and not GATA3)
IL2R = IL2 and NFAT

STAT3 = IL21R or IL23R or IL6R
IFNg = NFkB or (STAT4 and NFkB and NFAT and not STAT3 and not STAT6)

or (Tbet and not STAT3)
NFAT = TCR and not Foxp3

STAT1 = (IL27 and NFAT) or Jak1
IL4R = (IL4 and not SOCS1) or IL4_e

Fig. 3: Update rules of the Boolean network model of T Cell differentiation from
[26]. Available in electronic format at [1].

atoms, (ii) inhibitors are the negated atoms and (iii) the (only) product is the
Boolean variable that is updated through the considered formula. For example,
the Boolean formula for IL12R, namely:
IL12R = (IL12 and NFAT) or (STAT4 and not GATA3) or Tbet or (TCR and not GATA3)

is translated into the following four reactions:

({IL12 ,NFAT}, ∅, {IL12R}) ({STAT4}, {GATA3}, {IL2R})
({Tbet}, ∅, {IL12R}) ({TCR}, {GATA3}, {IL12R})

that, in BioReSolve syntax, become as follows:

react([il12,nfat],[void],[il12r]), react([stat4],[gata3],[il2r]),
react([tbet],[void],[il12r]), react([tcr],[gata3],[il12r])

Even more complex forms of Boolean networks (such as Threshold Boolean Net-
works [8]) can be translated into RSs, as we demonstrated in [5].

The RS model of T cell differentiation obtained from the translation of the
Boolean model is given in Fig. 4.
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react([il4r],[socs1,ifng],[stat6]), react([tgfb,nfat],[void],[tgfbr]),
react([tbet],[void],[il12r]), react([stat4],[gata3],[il2r]),
react([tcr],[gata3],[il12r]), react([il12,nfat],[void],[il12r]),
react([il2r],[void],[stat5]), react([gata3],[tbet],[gata3]),
react([stat5],[tgfb,rorgt,foxp3,tbet],[gata3]),
react([stat6,nfat],[tgfb,rorgt,foxp3,tbet],[gata3]),
react([stat3],[void],[il23r]), react([il23,stat3],[tbet],[il23r]),
react([tbet],[stat3],[ifng]), react([nfkb],[void],[ifng]),
react([stat4,nfkb,nfat],[stat6,stat3],[ifng]),
react([tgfbr,stat3,il6r],[tbet,gata3,foxp3],[rorgt]),
react([tgfbr,stat3,il21r],[tbet,gata3,foxp3],[rorgt]),
react([il21],[void],[il21r]), react([il18,il12],[stat6],[il18r]),
react([il6e],[void],[il6r]), react([il6],[void],[il6r]),
react([il18r],[void],[irak]), react([il12r,il12],[gata3],[stat4]),
react([tbet],[void],[socs1]), react([stat1],[void],[socs1]),
react([gata3,nfat],[stat1],[il4]), react([stat3,nfat],[void],[il21]),
react([rorgt],[void],[il6]), react([stat5],[il21r,il6r,gata3],[foxp3]),
react([stat5],[il21r,stat3,gata3],[foxp3]), react([tgfbr],[il21r,il6r,gata3],[foxp3]),
react([tgfbr],[il21r,stat3,gata3],[foxp3]), react([tbet],[ifng,il12,rorgt,foxp3],[tbet]),
react([stat4],[rorgt,foxp3],[tbet]), react([stat1],[rorgt,foxp3],[tbet]),
react([il27,nfat],[void],[stat1]), react([jak1],[void],[stat1]),
react([il21r],[void],[stat3]), react([il23r],[void],[stat3]),
react([il6r],[void],[stat3]), react([ifngr],[socs1],[jak1]),
react([il2,nfat],[void],[il2r]), react([il4e],[void],[il4r]),
react([il4],[socs1],[il4r]), react([irak],[foxp3],[nfkb]),
react([tcr],[foxp3],[nfat]), react([stat3,il17,il23r],[stat1,stat5],[il17]),
react([rorgt],[stat1],[il17]), react([nfat,nfkb],[tbet],[il2]),
react([ifng,nfat],[void],[ifngr]), react([ifnge,nfat],[void],[ifngr])

Fig. 4: Reactions of the RS model in BioReSolve syntax.

5 Attractors and Slicing Analyses

In this section we describe the analyses we performed on the RS model of T Cell
differentiation. We describe both the methodology we applied and the results we
obtained. We start from the generation of the LTS obtained by the execution of
BioReSolve. Then, we perform an analysis aimed at identifying attractors and
characterizing environmental configurations (i.e. RS contexts) leading to them.
Finally, we perform the slicing analysis in order to identify relevant and crucial
internal regulators for the expression of the different phenotypes.

5.1 Generation of the LTS

The LTS of the RS model is generated by invoking the main_do(digraph) di-
rective of BioReSolve after providing model and context specifications in the
expected syntax. In order to test all of the possibile configurations of the envi-
ronment, the RS context in the BioReSolve specification is defined as a process
that, at the first step, chooses in a non-deterministic way the set of environmen-
tal stimuli that have to be present. Then, the chosen stimuli will persist in the
context. According to the syntax of RS processes given in Definition 1, this is
expressed by the following parallel composition of context processes:

rec x11.TGFb.x11+ rec x0.0.x0 | . . . | rec x91.TCR.x91+ rec x0.0.x0

which, in the BioReSolve model specification, is expressed as follows:
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Fig. 5: Overall representation of the LTS as a graph without labels. Enlargments
of this image are available in Figures 6 and 7.

Fig. 6: Central part of the LTS de-
picted in Figure 5. The node on top
is the initial state, from which several
independent branches start.

Fig. 7: Two fragments of the LTS with
a trace leading to an attractor of size
four (left), and a few traces leading to
attractors of different sizes (right).

myenvironment(’[ x1 = ({tgfb}.x11 + {}.x0), x2 = ({il23}.x21 + {}.x0),
x3 = ({il12}.x31 + {}.x0), x4 = ({il18}.x41 + {}.x0),
x5 = ({il4e}.x51 + {}.x0), x6 = ({il27}.x61 + {}.x0),
x7 = ({il6e}.x71 + {}.x0), x8 = ({ifnge}.x81 + {}.x0),
x9 = ({tcr}.x91 + {}.x0),
x11 = {tgfb}.x11, x21 = {il23}.x21, x31 = {il12}.x31,
x41 = {il18}.x41, x51 = {il4e}.x51, x61 = {il27}.x61,
x71 = {il6e}.x71, x81 = {ifnge}.x81, x91 = {tcr}.x91,
x0 = {}.x0 ]’).

mycontext("[x1,x2,x3,x4,x5,x6,x7,x8,x9]").

Since we have 9 input entities representing the possible stimuli, this definition
of the context process leads to an LTS with an initial branching into 29 different
states, each being the start of a deterministic computation (i.e. a linear trace).

To give an idea of the structure of the LTS, in Fig. 5 we show its represen-
tation as a graph (without labels). Moreover, in Fig. 6 and Fig. 7 we zoom on
some portions of the graph. In particular, Fig. 6 shows the initial state of the
LTS and a few alternative traces all ending with a self-loop in the final state
that corresponds to an attractor of size 1 (a steady state). On the other hand,
Fig. 7 shows some examples of traces ending with attractors of different sizes.
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5.2 Attractors analysis

BioReSolve returns the LTS as a graph in dot format, which is then loaded
by our Python script. Then, attractors related with a target of interest are
identified by looking for cycles in the LTS. Due to the LTS structure, this is
particularly simple, and it is done in the target_computations function defined
in our Python script by invoking repeatedly the find_cycle function provided
by networkx package.

The analysis is performed by considering different targets corresponding to
the different combinations of phenotypes that a T cell can express. As we de-
scribed in Section 4.1, T cells can exhibit four phenotypes, Th1, Th2, Th17
and iTreg, represented by the expression of the four transcription factors Tbet,
GATA3, RORgt and Foxp3, respectively. Since we are interested also in combina-
tions of phenotypes, we consider all of the 24 combinations of such transcription
factors: each of them will be a target of our analysis (hence, 16 targets overall).

For each target, we identify the attractors that include states in which the
target transcription factors are expressed (not all necessarily in the same state),
and in which the other transcription factors are not expressed. For example, for
the target containing the combination of transcription factors {Tbet,GATA3},
we select the attractors (i.e. the cycles) that include at least one state in which
Tbet is present, at least one state (possibly the same) in which GATA3 is present,
and no state in which either RORgt or Foxp3 are present.

The filtering procedure just described gives as a result the subset of the
attractors that correspond to the achievement of the considered target. Each of
these attractors is reachable by making a different choice of environmental stimuli
in the first step. The collection of all of those choices allows us to determine, for
each target, which combinations of stimuli lead to it.

In Table 1 we report the number of different contexts (choices of environ-
mental stimuli) that lead to each target. The table shows only targets that can
be reached, and they result to be those in which only one transcription factor
is expressed, and those in which Tbet is expressed together with another tran-
scription factor. For each target, the contexts leading to it are summarized in
the table by a Boolean formula, while in Figure 8 they are depicted graphically.

Analysis results show that 248 contexts (out of 512) lead to the expression of
at least one of the four transcription factors under study. Tbet, corresponding
to phenotype Th1, is expressed in the majority of the cases (152 out of 248),
half of the times in combination with another transcription factor (in 76 cases
out of 152). Also Foxp3 is often expressed (in 96 cases out of 248), while RORgt
and GATA3 are less frequent (64 and 12 cases, respectively).

Fig. 8 allows us to make the following main observations about the role of
the environment in the T cell differentiation process:

– TCR has to be present in order to express any of the phenotypes
– IL23R and IL18R do not contribute to determine any of the phenotypes
– The presence of TGFb mostly discriminates between the expression of either

Foxp3/RORgt or tbet/GATA3.
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Target Contexts Formula
Tbet 76 (not X11) and (X91) and

( ((not X31) and (X61))
or ((not X31) and (not X61) and (X71) and (X81))
or ((not X31) and (not X51) and (not X61) and (not X71) and (X81))
or ((X31) and (X71)) )

GATA3 8 (not X11) and (not X31) and (X51) and
(not X61) and (not X81) and (X91)

Foxp3 72 (not X71) and (not X91) and
( ((X11) and (not X61) and (not X81))

or (X31) )
RORgt 16 (X11) and (not X31) and (not X61) and (X71) and (X91)
Tbet,GATA3 4 (not X11) and (not X31) and (X51) and

(not X61) and (not X71) and (X81) and (X91)
Tbet,Foxp3 24 (X11) and (not X31) and (not X71) and (X91) and ( (X61) or (X81) )
Tbet,RORgt 48 (X11) and (X71) and (X91) and ( (X31) or (X61) )
TOTAL 248

Table 1: Summary of contexts leading to each reachable target.

Moreover, the detailed characterization of the contexts leading to the expression
of each phenotype could allow several more specific observations to be done.

The results of the analysis we conducted partially agree with those of a
similar analysis done in [26]. However, there are also some significant differences
between the results of the two studies. First of all, in [26] the authors show
that it is also possibile to reach configurations in which three or four (i.e., all)
phenotypes are expressed. Morevoer, they show that a configuration in which
only RORgt is expressed cannot be reached. The Boolean network we started
from is exactly the same as the one considered in [26]. The main difference
between the two analysis approaches is in the semantics of the environment: in
our case the environment is modelled by a context process that remains the same
after the initial non-deterministic choice, while in [26] the analysis is performed
by applying a simulation method that allows activity levels and noise to be taken
into account for the input species. Hence, the method applied in [26] can lead to
a larger range of hypotheses about the modelled system behaviours (such as the
possibility for T cell to express more than two phenotypes) while ours is more
conservative and consistent with the standard simulation approaches.

5.3 Slicing analysis

For each target, slicing analysis is conducted by invoking the main_do(slice,S)
directive of BioReSolve for each state of each attractor of the target. This is
obtained by implementing suitable nested loops in the Python script that, at each
iteration, execute BioReSolve through the Python-to-Prolog binding provided by
the swiplserver package.

Slicing analysis in BioReGolve requires, in addition to the RS reactions, to
provide the specification of a monitor (i.e. a logic formula) to collect the proper
information during the model execution (see [12] for details). Monitored entities
are only the transcription factors that the target requires to be present.
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Fig. 8: Graphical representation of the Boolean formula given in Table 1 and
characterizing contexts leading to each reachable target. Green cells denote that
the corresponding environmental stimulus has to be present, red cells denote
absences, and white cells denote that the stimulus is irrelevant.

Moreover, the context specification now does not contain the non determin-
istic choice of the general RS model: it is immediately initialized with a specific
configuration of environmental stimuli. Here we show an example of specification
of both the context and the monitor for the slicing analysis of one of the states of
the target { Tbet, RORgt } reachable when the context does not provide IL12,
IL4_e and INFg_e (denoted as x31 x51 and x81, respectively):

mycontext("[x11,x21,x0,x41,x0,x61,x71,x0,x91]").
mymonitor("[ m0 ]").
mymondef("[ m0 = ([{il12r,il21,il21r,il23r,il6r,nfat,rorgt,

socs1,stat1,stat3,tbet,tgfbr} inW].no({tbet,rorgt})
+ [-({il12r,il21,il21r,il23r,il6r,nfat,rorgt,

socs1,stat1,stat3,tbet,tgfbr} inW)].m0) ]").

Results of slicing analysis are summarized in Figure 9, where it is possibile to
see, for each target, which internal genes are strictly necessary and which are
somehow relevant for the expression of the transcription factor of the target.
We remark that this is a form of causality analysis: for example, one gene that
results to be necessary may cause the execution of a chain of reactions leading
after some steps to the expression of one of the target transcription factors.

Once necessary and relevant genes for one target are identified, we can look
for them in the results of the analysis conducted for the other targets. This
leads to a notion of specificity that is very important. For example, a gene that
is necessary for the expression of a phenotype and that is not relevant for the
expression of the other phenotypes (i.e., it is highly specific) is a perfect candidate
as a target for a drug aimed at inhibiting the expression of its phenotype.
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Fig. 9: Results of slicing analysis. Black cells identify genes (in columns) that
are strictly necessary for the achievement of each target (in rows). Gray cells
identify relevant genes. White cells identify genes that are not relevant.

The table in Figure 9 allows us to assess necessity, relevance and specificity
of each internal gene for each phenotype. In particular, for the four phenotypes
characterized by a single transcription factor we can observe that:

– for target Tbet, the analysis suggests that IFNgR and Jak1 are two rele-
vant genes with high specificity, although they are not strictly necessary for
the achievement of the target (i.e., their inhibition or knock-out does not
guarantee that the target will not be reached);

– for target GATA3, the analysis suggests that IL4R and STAT6 are strictly
necessary and highly specific;

– for target Foxp3, the analysis suggests that IL2R and STAT5 are relevant
and highly specific, although not strictly necessary; and

– for target RORgt, the analysis suggests that IL6R and STAT3 are strictly
necessary and highly specific, but also IL21, IL21R and IL23 result to be
particularly important and specific (as also pointed out in [23]).

6 Conclusions and future work

In this paper we have presented a methodology for analyzing the attractors of
a RS model and for identifying the biological entities that are responsibile for
their achievement. Our methodology considers an operational semantics of RSs
which allows us to construct Labeled Transition Systems (LTSs) to describe
the behaviours of the model. Then, we apply a slicing algorithm to identify the
minimal entities which describe a behaviour that we analyse.

Our methodology can be applied to Boolean network models of gene regula-
tion, by translating them into RSs. We remark that such a translation empha-
sizes the different causes for the activation of each gene (representing them as
different reactions). Moreover, it enables the application of analysis tools already
developed for RSs.

We have applied our analysis to a model of T cell differentiation in the
immune system. The analysis of the model allowed us to determine which com-
binations of stimuli lead to each phenotype, and also which proteins inside T
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cells are involved in each case. This analysis contributes to the understanding
of the behaviour of the model, to correct it in case some mistakes are identified
and to use it for identifying drug targets. We discussed the relation with other
approaches in the literature.

Our methodology is general and can be applied to the (large number of)
case studies in the public database on the CellCollective platform [18], as well
as to other Boolean network models. As a future work we plan to extend our
methodology in several ways, for instance by deriving information on the number
of paths in which important molecules for a given target are used, by considering
subsets of molecules and by counting the paths in which a (set of) molecule(s)
is present. Our method might also be combined with other analyses (e.g. [11,
13, 14]) which are based on quantitative extensions of RSs, in order to define
models which can express directly properties which require to count the number
of entities in the system, or to express the time and speed of a reaction.
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