
Modelling and Verification of a Health Cloud
Management Protocol

Almo Cuci1, Umar Ozeer2, and Gwen Salaün1

1 Univ. Grenoble Alpes, CNRS, Grenoble INP, Inria, LIG, F-38000 Grenoble France
2 Euris Cloud Santé, Paris, France

Abstract. The digitisation of personal health information (PHI)
through electronic health record (EHR) is now widely adopted due to
their efficiency in terms of cost, storage, processing, and the subsequent
quality of delivering patient care. However, security concerns remain one
of its major setback. In order to handle EHR, institutions need to com-
ply with their local government security regulations. These regulations
control to which extent health data can be processed, transmitted, and
stored as well as define how misuses are addressed. ϕ-comp has been pro-
posed as an industrial solution for monitoring, assessing, and evaluating
the compliance of health applications with respect to defined security
regulations. ϕ-comp is able to assess the level of security risk of an appli-
cation at runtime and to automatically perform the required mitigation
actions to recover a compliant environment. Since the risk associated to
sensitive health data is critical, there is a need of guarantees in terms
of correctness of the ϕ-comp approach. In this paper, we first present
a formal specification of ϕ-comp representing all the components of the
solution as well as their behaviour, that is, the way they all interact to-
gether to implement the whole approach from monitoring to mitigation.
In a second step, some important properties of interest are formalised
and analysed using model checking techniques on several realistic appli-
cations.

1 Introduction

An Electronic health record (EHR) consists of a digital version of a patient’s per-
sonal health information (PHI) such as medications and laboratory test results.
The digitisation of healthcare has revolutionised the efficiency of the industry
in terms of storage, transmission, and processing capabilities as well as in terms
of quality, cost, and time effectiveness of patient care. In order to host an envi-
ronment (infrastructure, application, services, solutions) that manipulates PHI
via EHR, institutions need to comply to the security regulations enforced by
the local regulating authorities. These regulations control to which extent per-
sonal health information can be processed, transmitted, shared, and stored. In
addition, control audits can take place at any given time to check whether the
hosted platforms respect the high security protocols imposed. In such a context,
all activities (system logs, application logs, user activities, operations performed,
etc.) should be logged and stored in a secure manner.

2 A. Cuci, U. Ozeer, G. Salaün

ϕ-comp [14, 15] is a security compliance monitoring and management so-
lution for sensitive health data environment, which respects existing security
regulations. It monitors, computes, and evaluates the security compliance of
health applications and their underlying infrastructures. The monitored data
are reported and classified with respect to four security areas (confidentiality,
integrity, availability, traceability). These data are analysed by security area and
further evaluated into three levels of risk (identified by colors), namely nominal
behaviour (blue), potential threat (orange), and non-compliant behaviour (red).
In the latter case, risk mitigation actions are automatically performed so as to
attenuate the level of risk and restore a compliant behaviour. System adminis-
trators are also notified in case of non-compliance, so that manual interventions
can be carried out if required. Monitored data as well as performed mitigation
actions are logged for a posteriori auditing. These logs are used for generation of
compliance reports for the hosting institution and for on-demand request from
supervising authorities.

Since health data and associated security risks are crucial, there is a need
of guarantees in terms of correctness of the ϕ-comp approach. In this paper, we
first present a formal specification of ϕ-comp representing all the components of
the solution’s architecture as well as the behaviour of all components including
the way they interact together. This specification step is achieved using the LNT
process algebraic specification language [3,9]. In a second step, some important
properties of interest are formalised using the MCL logic [13] and analysed using
model checking techniques on several realistic applications. As far as analysis is
concerned, we rely on the CADP verification toolbox [8], which provides powerful
model checking tools for automating these analysis steps. The experiments we
carried out on these applications confirmed that all properties were satisfied, thus
convincing the protocol’s designers of the correctness of the ϕ-comp solution.

The rest of the paper is organized as follows. Section 2 presents the ϕ-comp
solution with more details. Section 3 describes the formal specification of the
ϕ-comp protocol. Section 4 introduces the definition of properties and their ver-
ification using model checking techniques. Section 5 surveys related work and
Section 6 concludes the paper.

2 Health Management Protocol

ϕ-comp [14, 15] is a security compliance monitoring and management solution,
which was designed to target cloud computing environments that house sensitive
health data. In the rest of this section, we successively present the application
model, the architecture of the solution and we give a short description of the
components involved in the ϕ-comp approach.

2.1 Application Model

The application model corresponds to an abstraction of the computing environ-
ment and consists of two levels: the infrastructure and the application.

Modelling and Verification of a Health Cloud Management Protocol 3

An infrastructure is modelled by a set of virtual machines (VM) and the phys-
ical network connecting them. The infrastructure hosts the application, that is,
it provides the physical resources such as CPU, memory, disk, and bandwidth
for executing applicative entities. Figure 1 illustrates an instantiation of an ap-
plication model consisting of three VMs and two physical networks (net1 and
net2) connecting them.

An application is modelled by a set of software entities and bindings. A
binding implements the communication between a couple of software entities
and is directed according to the functional dependency between the entities.
A binding can be optional or mandatory. Each infrastructure and applicative
entity is uniquely identified. A software entity is functional and compliant when
all of its mandatory bindings are running and are compliant. Therefore, the non-
compliance of a software entity impacts other entities which depend on it. The
compliance of a software entity is not affected by its optional dependencies. Note
that there are no cycle of dependencies between software entities. Figure 1 depicts
three software entities. VM1 hosts a front-end HTTP server (e.g., Apache), VM2
hosts an application server (e.g., Tomcat), and VM3 hosts a relational database
system (e.g., MariaDB). These software entities are connected through bindings
(b1 and b2) which allow communication between them and give the direction of
the functional dependencies.

Fig. 1: An Instance of an Application Model

2.2 Compliance Management Protocol

Figure 2 gives an overview of the architecture of the ϕ-comp solution. The com-
ponents involved in this architecture are first introduced. In a second step, we
describe how they interact together in order to fulfil the compliance manage-
ment’s goals.

Probes and Enforcers are the only participants which are deployed on the
target environment to be managed. The role of Probes is to report monitoring
data whereas Enforcers perform actions on the environment so as to enforce
security measures and attenuate the level of risk. The rest of the participants
are deployed on a dedicated infrastructure.

The Preliminary Data Analyser (PDA) retrieves data reported by Probes,
and subsequently formats and enriches these data. The PDA computes a pre-
liminary security risk based on these monitoring data.

4 A. Cuci, U. Ozeer, G. Salaün

Fig. 2: Architecture of the Protocol

The Analyser evaluates the risk of the target environment and determines
whether an entity is compliant. The Analyser decides the mitigation actions in
case of non-compliance.

The Registry stores the data reported by probes, the changes in security risk,
and all the mitigation decisions taken by the Analyser. This aims at keeping a
log of the compliant/non-compliant behaviour of the target environment as well
as the decisions and mitigation actions performed in case of non-compliance.
The data stored on the registry are kept for a customisable period of time with
respect to the required regulations (e.g., one year for HDS regulation).

The Graphical User Interface (GUI) displays the current security risk of
each entity of the target environment in real time and indicates whether they
are compliant. The GUI allows system administrators to work collaboratively
for handling security incidents and carrying out investigations.

The Audit component allows the generation of security reports based on the
behaviour of the target application with respect to the different security areas.
Reports can be generated at a regular period (e.g., at the end of every week) or
on demand.

The Initialiser component is responsible for configuring and setting up ϕ-
comp. It determines the placement and deployment of probes and enforcers on
the target environment. The Initialiser ensures the consistent start up of the
different participants of ϕ-comp with respect to their functional dependencies.
It is worth noting that the Initialiser is not involved in the initial setup of the
target environment.

Let us now focus on how all these components work together to monitor the
application, analyse identified risks, and mitigate them in order to maintain com-
pliance. Figure 3 gives an overview of the procedure for compliance management
by the participants of ϕ-comp. Monitoring is performed by Probes which report

Modelling and Verification of a Health Cloud Management Protocol 5

information to the PDA. These data are subsequently classified into the corre-
sponding security risk areas, and a preliminary risk is established by the PDA
for each security area. Assuming that a target environment is initially compliant,
for each change in its preliminary risk, the Analyser is notified. The Analyser
evaluates the current security risk relative to each security area for each infras-
tructure and applicative entity into three levels, namely blue, orange, and red.
If the risk evaluated by the Analyser is blue, no actions are undertaken. A risk
evaluated as orange represents a compliant behaviour but a potential threat. In
this case, risk mitigation actions are highly recommended but not compulsory
until the evaluated risk becomes red. On the other hand, if the risk evaluated is
red, the Analyser computes the impact of the risk. In the case of an infrastruc-
ture entity, the impact is localised whereas in the case of a software entity, the
impact is propagated to all mandatory dependent entities. A red risk for a soft-
ware entity thus means that its dependent entities are also assigned a red risk.
A red risk implies that mitigation actions have to be performed to attenuate the
level of risk and recover a compliant environment. These mitigation actions are
determined by the Analyser. The GUI is then updated with the current risk and
system administrators are notified of the non-compliance. Mitigation actions are
forwarded to Enforcers which act on the target environment.

Fig. 3: Overview of Compliance Management

3 Formal Specification

In this section, we introduce the LNT specification for the ϕ-comp protocol.
We chose LNT [3, 9] as specification language because it is expressive enough
and adequate for formally describing communication protocols as the protocol
presented beforehand in this paper. Moreover, it is equipped with CADP [8], a
rich toolbox for analysing LNT specifications using model checking techniques.

LNT is an extension of LOTOS [10], an ISO standardised process alge-
bra, which allows the definition of data types, functions, and processes. Pro-
cesses define actions (that can come with incoming or outgoing parameters) and
these actions can be organised using several operators, among which: sequential

6 A. Cuci, U. Ozeer, G. Salaün

composition (;), conditional statement (if-then-else), hiding (hide) that hides
some action in a behaviour, non-deterministic choice (select), parallel composi-
tion (par) where the communication between the involved processes is carried
out by rendezvous on a list of synchronised actions, looping behaviours described
using process calls or explicit operators (while, for, loop), and assignment (:=)
where the variable should be defined beforehand (either in a var block or as a
formal parameter). LNT is formally defined using operational semantics based
on Labelled Transition Systems.

In the rest of this section, we present how the different elements of the ϕ-
comp protocol are specified using LNT. The specification consists of about 2000
lines of LNT.

3.1 Application Model

First of all, a model of the application is specified in LNT. Data types are used to
describe the application model, that is, VMs, software entities or components,
and bindings between components. More precisely, an application consists of
a set of VMs, a physical network connecting these VMs, and a set of bindings
connecting the components hosted on the VMs. Each binding also has a Boolean
parameter indicating whether this binding is mandatory (if not, it is optional).
A VM consists of an identifier and a set of components.

Figure 4 gives an excerpt of LNT specification describing the virtual machines
and bindings corresponding to the application shown in Figure 1. One can see
that each VM hosts a single component (C1, C2, etc.). The physical network is
not made explicit in this example for simplification purposes.

var C1 , C2 , C3 : COMPONENT,
ALLVM : VMs,
ALLBDN : BDNs,
APP : APPLICATION

in

C1 := COMPONENT(1) ;
C2 := COMPONENT(2) ;
C3 := COMPONENT(3) ;

ALLVM := VMs ({ VM(1 , ”FRONT” , {C1}) ,
VM(2 , ”SERVER” , {C2}) ,
VM(3 , ”DBMS” , {C3}) }) ;

ALLBDN := BDNs (
{ BINDING(VM(1 , ”FRONT” , {C1}) , VM(2 , ”SERVER” , {C2}) , TRUE) ,

BINDING(VM(2 , ”SERVER” , {C2}) , VM(3 , ”DBMS” , {C3}) , TRUE) ,
BINDING(VM(1 , ”FRONT” , {C1}) , VM(3 , ”DBMS” , {C3}) , FALSE) }) ;

APP := APPLICATION(”model−316” , ALLVM, ALLBDN) ;

end var

Fig. 4: Example of Application Model in LNT

Modelling and Verification of a Health Cloud Management Protocol 7

3.2 Management Protocol

In this section, we first present the specification of each participant of the man-
agement protocol, and we terminate with the main process describing how all
participants interact together to model the whole management protocol. It is
worth noting that several components (Audit, Registry, GUI and Initialiser) are
left outside of the specification because their role does not impact the behaviour
of the protocol. In contrast, the following entities are crucial and are made ex-
plicit in the specification: Probes, PDA, Analyser and Enforcers.

Probe processes mostly capture observation messages obtained by monitoring
the application and are useful to identify problems for each security area. The
Probe acts as a listener mechanism. Every probe is identified by a unique iden-
tifier and has as parameter the unique identifier of the entity being monitored.
Every time a probe raises an alert, this observation comes with a timestamp and
a triple (obs, val, ra) corresponding respectively to the observation made by the
probe, its value, and the risk area associated with this observation.

The PDA process receives observation messages issued by the Probe com-
ponent. Each message contains information about the security areas, the policy
used to evaluate the risk (optimistic or pessimistic) and an entity weight value
(low, medium, high). Based on these inputs, the PDA process computes a pre-
liminary risk level. This risk level is specified using multiple if-else conditions for
each parameter value observed in the respective messages. For the values out of
the normal scope, a warning or critical preliminary risk score is assigned as re-
sult. More precisely, the preliminary risk has four fields to store the score for each
security risk area, and three levels of criticity (information, warning, critical).
Once computed, this preliminary risk level is submitted to the next component
(Analyser) for a finer analysis, and this message contains the preliminary risk
score type, information about the security areas, the policy used for evaluation
and the entity weight.

The Analyser process can be seen like a decision-making mechanism. It re-
ceives a preliminary risk message from the PDA process, and goes further in its
evaluation of the risk and the compliance of the entity. Based on the informa-
tion received, the Analyser process can either decide to ignore the message or
to trigger a mitigation action by issuing a message to the enforcers with pre-
cise countermeasures to be initiated. The mechanism of taking mitigation action
relies on three inputs: the preliminary risk score of a single-dimension security
area, the policy used (pessimistic, optimistic) and the entity weight. The output
is a final risk label of the color blue, orange, or red. This output is computed
using the table given in Figure 5.

If the final score is blue, the Analyser process ignores it. If the compliance
score is orange, the Analyser process keeps monitoring the progress of the specific
parameter in this security area. If it is red, then mitigation actions are required.
For each security area parameter of the entity that is violated, a countermeasure
is required in order to mitigate the risk and set the entity back to compliant
behaviour.

8 A. Cuci, U. Ozeer, G. Salaün

Fig. 5: Compliance Evaluation Results

Mitigation actions are computed via a dedicated process (called ’mitigate’).
This process takes as input the decision issued by the Analyser process (with
all the aforementioned parameters), and compute the corresponding mitigation
action per security area. As a result, a mitigation action consists of the entity
identifier and the action to be taken (e.g., restart VM, add CPU, isolate from
internet, log modifications, restart probe, etc.).

These mitigation actions have as target the enforcers, which are in charge of
actually triggering these actions. Enforcers are able to access to the source of
the problem and implement the mitigation actions. Since the specification is ab-
stract, there is no real change of the application. Therefore, the specification can
issue and propose countermeasures but they are not actually exploited because
the application is not a real one, but just a model of the real one.

In our model, there is one more process called pbinjector. This process is used
for issuing potential problems occuring on the application and thus for simulating
the execution of the ϕ-comp solution when examples of risks occur. To do so,
this process simulates different states of the software entities and particularly
abnormal values are of interest to us. The states of the entity represent the
compliance of the security areas. This process is very useful to simulate many
scenarios, that turn out to be interesting in terms of exhaustive verification as
we will see in Section 4.

Finally, the main process represents all processes (probes, PDA, analyser,
enforcers, and problem injector) in parallel as shown in Figure 6. Beyond putting
all processes in parallel, the main process also makes explicit how these processes
interact together, thus making explicit the architecture given in Figure 2. As an
example, the PDA process synchronize with the other processes on the actions
PROBEVENT and ANALYSISEVENT.

4 Verification

In this section, in a first step, we introduce the properties that must be pre-
served by the health management protocol. These properties are then formally
specified using the MCL language and automatically analysed using the CADP
model checker. MCL [13] is an extension of the alternation-free µ-calculus with
regular expressions, data-based constructs, and fairness operators. CADP [8] is
a rich verification toolbox that implements the results of concurrency theory

Modelling and Verification of a Health Cloud Management Protocol 9

process MAIN [PROBEVENT: any , ANALYSISEVENT: any , DECISION: any ,
COUNTERMEASURE: any] i s

var app : APPLICATION in
app := app l i c a t i on () ; use app ;

par
PROBEVENT −> pb in j e c t o r [PROBEVENT]

| |
PROBEVENT −> probe [PROBEVENT]

| |
PROBEVENT, ANALYSISEVENT −> pda [PROBEVENT , ANALYSISEVENT]

| |
ANALYSISEVENT , DECISION −> ana ly s e r [ANALYSISEVENT , DECISION]

| |
DECISION , COUNTERMEASURE −> mit iga t e [DECISION , COUNTERMEASURE]

end par
end var

end process

Fig. 6: Main Process in LNT

and is used for the design of asynchronous concurrent systems, such as commu-
nication protocols, distributed systems, asynchronous circuits, multiprocessor
architectures or web services. It provides a wide set of functionalities, ranging
from step-by-step simulation to massively parallel model-checking. The toolbox
offers a compiler for several input formalisms, one of which is LNT. In this work,
we particularly rely on the Evaluator model checker, which takes as input an
LNT specification and an MCL formula, and returns a Boolean verdict and a
counterexample if the property is violated.

Let us now introduce the properties, which were identified as important for
the protocol, and are listed below:

– The protocol systematically detects and handles every raised problem
(probe).

– Every problem corresponding to a non compliance is followed by a mitigation
action.

– A specific non-compliance problem of one entity should not affect the other
entities connected to that entity.

– Entities subject to mitigation actions can keep communicating normally with
the other connected entities.

– Mitigation actions are only performed when there is a non-compliance
– The correct mitigation action is performed when there is a non-compliance
– When a mitigation action is performed on an entity, the latter becomes

compliant

In the rest of this section, we present with more details the two first properties,
which are the most important ones.

The first property (Figure 7) is specified as a liveness property (inevitable
property), and checks whether every probe raised by the environment is sys-
tematically detected. This is written in MCL as follows using the inevitable

10 A. Cuci, U. Ozeer, G. Salaün

pattern and indicating using ”?any” that any parameter can come with the
PROBEVENT action:

”MODEL−316. bcg” |= with eva luator4
INEVITABLE ({ PROBEVENT ?any . . . }) ;

expected TRUE;

Fig. 7: MCL Property for Probe Detection

The second property (Figure 8) states that every time an action is raised by
a probe indicating a non-compliant behaviour for a specific software entity, there
must be a reaction from ϕ-comp in the form of a mitigation action. This reaction
is actually justified only if the risk is assessed as critical (red) by the analysis
process. To verify this, we first specify that the action ANALYSISEVENT has
a parameter with a risk score equivalent to the red label and observe if there
exists a parameter in the next action (DECISION) that updates the value for the
detected problem. This corresponds to the first part of the MCL property given
below for illustration purposes, where we can see that a traceability problem is
detected and the decision is taken of restarting the corresponding service.

The second part of the property aims at checking whether the response to
mitigate the risk is the correct one. To do so, we check that the parameters
appearing in the ANALYSISEVENT action are the same as in the DECISION
action. In particular, the Probe identifier is extracted from the observation mes-
sage and we compare if it has the same value as the identifier issued with the
mitigation action. If this is the case, it means that every non-compliant behaviour
is mitigated by the correct action.

”MODEL−316. bcg” = t o t a l rename
”ANALYSISEVENT !PRELIMINARY RISK (\ ([0 −4]\) , \([0 −4]\) , \([0 −4]\) ,

\([0 −4]\))
!MESSAGE2 TRACEABILITY (\ ([0 −4]\) , \([0 −4]\) , . ∗) .∗”
−> ”ANALYSISEVENT !\1 !\2 !\3 !\4 !\5 !\6” ,

”DECISION !RESTART SERVICE (\ ([A−Z]∗\) , . ∗)
!MESSAGE2 TRACEABILITY (\ ([0 −4]\) , \([0 −4]\) , . ∗) , .∗”
−> ”DECISION !\1 !\2 !\3”

in gene ra t i on o f ”INSTANCE4. l n t ” ;

”MODEL−316. bcg” |= with eva luator4 [t rue ∗ . { ANALYSISEVENT !3 ! 3 ! 3
! 4 ! 1 ! 1 }]

< (not ’PROBEVENT ! . ∗ ’) ∗ . { DECISION !TRUE !1 ! 1 } > t rue ;
expected TRUE;

Fig. 8: MCL Property for Systematic Mitigation Action

Modelling and Verification of a Health Cloud Management Protocol 11

These properties were analysed on a set of realistic applications where we
vary the number of virtual machines, software entities, and bindings. In order
to simulate real scenarios, we added a new process (pbinjector, see Section 3)
whose role is to inject problems of any kind to the application (confidentiality,
integrity, availability, traceability). In its current version, the ϕ-comp approach
can support several problems but not at the same time, it handles them one
after the other. Therefore, in our verification scenarios, we respected this specific
assumption as well.

As a result, all the properties were analysed and turn out to be satisfied on
the aforementioned concrete applications (with 4-5 virtual machines, which is
usually the number of machines handled by the ϕ-comp framework). Moreover, it
is worth noting that this is not necessary to use large applications for verification
purposes, because most problems are usually found on small yet pathological
applications. It takes up to a few minutes to verify all properties on a realistic
application, which is reasonable because the model checking of the protocol is
executed off-line.

5 Related Work

In this section, we first present several works dedicated to the specification and
verification of management protocols in cloud computing or Fog computing /
IoT. At the end of the section, we compare our work with respect to these
related works.

In [1,2], the authors present a reconfiguration protocol applying changes to a
set of connected components for transforming a current assembly to a target one
given as input. Reconfiguration steps aim at (dis)connecting ports and changing
component states (stopped or started). This protocol supports failures that may
occur during the reconfiguration process. The protocol is robust in the sense
that all the steps of this protocol preserves a number of architectural invariants.
This was proved using the Coq theorem prover. We preferred model checking
techniques here, because they are convenient at design time in order to detect
possible issues. Theorem proving is interesting when the developers have already
at their disposal a stable version of a protocol, and they ultimately want to prove
its correctness.

In [6,7,17], the authors present a self-deployment protocol that was designed
to automatically configure cloud applications consisting of a set of software el-
ements to be deployed on different virtual machines. This protocol starts the
software elements in a certain order, using a decentralised algorithm. It works in
a decentralised way, i.e., there is no need for a centralised server. It also starts the
software elements in a certain order, respecting important architectural invari-
ants. This protocol supports virtual machine and network failures, and always
succeeds in deploying an application when faced with a finite number of fail-
ures. A formal specification of the protocol allowed the successful verification of
important properties to be preserved.

12 A. Cuci, U. Ozeer, G. Salaün

[5] presents a protocol for reconfiguring applications running in the cloud.
The protocol supports the addition of new components and VMs as well as the
removal of components and VMs. All these reconfiguration operations are posted
through a cloud manager, which is in charge of guiding the reconfiguration of
the whole application. This protocol also detects the occurrence of failures and
in those situations makes the application restore a global consistent state. In
order to ensure its correctness and robustness, the protocol was specified and
verified Maude’s analysis tools. The set of properties in this work focused on
reconfiguration’s correctness whereas the main goal here is to ensure the correct
monitoring and application of mitigation actions.

[11, 12] propose verification of IoT applications before deployment using
model checking techniques. [4] applies infinite-state model checking to formally
verify IoT protocols such as the Pub/Sub consistency protocol adopted by the
REDIS distributed file system. The verification method is based on a combi-
nation of SMT solvers and overapproximations as those implemented in the
Cubicle verification tool. This work focuses on the verification of the communi-
cation techniques used in IoT systems. Since these protocols involve infinite data
structures, the authors chose to use analysis techniques capable of reasoning on
infinite state spaces.

[16] focus on a failure management protocol, which allows the supervision of
IoT applications and the management of failures. This protocol targets stateful
IoT applications in the sense that those applications handle and store data dur-
ing their execution. When a failure occurs, the protocol detects the failure and
restores a consistent pre-failure state of the application to make it functional
again. Since designing such distributed protocol is error-prone, it was specified
and analysed using formal specification techniques and model checking tools in
order to ensure that the protocol respects some important properties. These
analysis steps helped to detect several issues and clarify some subtle parts of the
protocol.

In this paper, we decided to rely on model checking techniques, as it was the
case in [2, 7, 16], because these techniques turn out to be effective in order to
validate the correctness of important properties on representative applications.
It is worth noting that this work was achieved in collaboration with a company
(Euris), and formal verification techniques applied on a protocol used in an
industrial context. Last but not least, to the best of our knowledge, this is the
first time formal verification techniques are used for cloud platforms dealing with
healthcare.

6 Concluding Remarks

In this paper, we have focused on a health management protocol, which allows
the storage, monitoring and supervision of health cloud applications. When a
problem is detected, it is analysed and, if necessary, a decision is taken to apply
a mitigation action. Since this protocol targets health data and applications, it
makes it critical and it is therefore crucial that specific properties of correctness

Modelling and Verification of a Health Cloud Management Protocol 13

are preserved by the protocol. It was decided to rely on formal specification
techniques and verification tools in order to ensure that the protocol respects
some important properties. In particular, we used a process algebraic specifi-
cation language and model checking techniques for verifying these properties.
The analysis of several applications and scenarios show that the aforementioned
properties were satisfied, thus showing that the protocol works as expected.

The main perspective of this work is to improve the current management
protocol by making use of blockchains in order to store the health data in a secure
way while providing traceability and transparency of the approach. Developing
such a solution consists first in designing a protocol for the distributed storage
of health data in the cloud by using blockchain technologies. Similarly to what
we have done in this paper, we will also make use of model checking techniques
for validating the protocol. Beyond analysis and certification, we finally plan to
implement the solution using cloud and blockchain technologies.

Acknowledgements. The authors would like to thank Frédéric Lang for his
help in the specification and verification of the protocol.

References

1. F. Boyer, O. Gruber, and D. Pous. Robust Reconfigurations of Component As-
semblies. In Proc. of ICSE’13, pages 13–22. IEEE Press, 2013.

2. F. Boyer, O. Gruber, and G. Salaün. Specifying and Verifying the Synergy Recon-
figuration Protocol with LOTOS NT and CADP. In Proc. of FM’11, volume 6664
of LNCS, pages 103–117. Springer-Verlag, 2011.

3. D. Champelovier, X. Clerc, H. Garavel, Y. Guerte, F. Lang, C. McKinty,
V. Powazny, W. Serwe, and G. Smeding. Reference Manual of the LNT to LOTOS
Translator (Version 6.7). INRIA/VASY and INRIA/CONVECS, 153 pages, 2018.

4. G. Delzanno. Formal Verification of Internet of Things Protocols. In Proc. of
FRIDA’18, 2018.

5. F. Durán and G. Salaün. Robust and reliable reconfiguration of cloud applications.
J. Syst. Softw., 122:524–537, 2016.

6. X. Etchevers, G. Salaün, F. Boyer, T. Coupaye, and N. D. Palma. Reliable Self-
deployment of Cloud Applications. In Proc. of SAC’14, pages 1331–1338. ACM,
2014.

7. X. Etchevers, G. Salaün, F. Boyer, T. Coupaye, and N. D. Palma. Reliable Self-
deployment of Distributed Cloud Applications. Softw., Pract. Exper., 47(1):3–20,
2017.

8. H. Garavel, F. Lang, R. Mateescu, and W. Serwe. CADP 2011: A Toolbox for the
Construction and Analysis of Distributed Processes. STTT, 15(2):89–107, 2013.

9. H. Garavel, F. Lang, and W. Serwe. From LOTOS to LNT. In J.-P. Katoen,
R. Langerak, and A. Rensink, editors, ModelEd, TestEd, TrustEd – Essays Dedi-
cated to Ed Brinksma on the Occasion of His 60th Birthday, volume 10500, pages
3–26, Oct. 2017.

10. ISO. LOTOS — A Formal Description Technique Based on the Temporal Ordering
of Observational Behaviour. Technical Report 8807, ISO, 1989.

11. A. Krishna, M. L. Pallec, R. Mateescu, L. Noirie, and G. Salaün. IoT Composer:
Composition and Deployment of IoT Applications. In Proc. of ICSE’19, pages
19–22. IEEE / ACM, 2019.

14 A. Cuci, U. Ozeer, G. Salaün

12. A. Krishna, M. L. Pallec, R. Mateescu, L. Noirie, and G. Salaün. Rigorous Design
and Deployment of IoT Applications. In Proc. of FormaliSE’19, pages 21–30, 2019.

13. R. Mateescu and D. Thivolle. A Model Checking Language for Concurrent Value-
Passing Systems. In Proc. of FM’08, volume 5014 of LNCS, pages 148–164.
Springer, 2008.

14. U. Ozeer. φ comp: An architecture for monitoring and enforcing security com-
pliance in sensitive health data environment. In Proc. of ICSA’21, pages 70–77.
IEEE, 2021.

15. U. Ozeer and B. Pouye. Risk analysis based security compliance assessment and
management for sensitive health data environment. In Proc. of HealthCom’20,
pages 1–7. IEEE, 2020.

16. U. Ozeer, G. Salaün, L. Letondeur, F. Ottogalli, and J. Vincent. Verification of a
Failure Management Protocol for Stateful IoT Applications. In Proc. of FMICS’20,
volume 12327 of LNCS, pages 272–287. Springer, 2020.

17. G. Salaün, X. Etchevers, N. D. Palma, F. Boyer, and T. Coupaye. Verification
of a Self-configuration Protocol for Distributed Applications in the Cloud. In
Assurances for Self-Adaptive Systems - Principles, Models, and Techniques, volume
7740 of LNCS, pages 60–79. Springer, 2013.

