
Towards a Flexible Approach for Understanding
and Comparing Traces?

Juliana Küster Filipe Bowles1,2[0000−0002−5918−9114]

1 SCCH, Softwarepark 32a, 4232 Hagenberg, Austria
2 School of Computer Science, University of St Andrews, St Andrews, KY16 9SX, UK

jkfb@st-andrews.ac.uk

Abstract. In this paper we present our vision towards a formal flexible
approach to search for optimal traces of execution with respect to differ-
ent parameters of interest (e.g., time, efficacy, cost and/or concurrency),
enriched with a mechanism to understand the difference between (sub-
optimal) traces and their formalisation as explanations. The underlying
idea of the approach is to be generalisable and hence suited to tackle
practical problems in a variety of domains from aerospace, automotive
and automation industries, as well as systems and applications developed
for healthcare. Our examples here come from a healthcare based context.

Keywords: Event Structures · Traces· Optimisation · SMT solvers

1 Introduction

Complex software systems have become the heart of the world’s economy, society
and infrastructure. Consequently, software vulnerabilities and errors in these
systems can have substantial global impact and need resilient approaches and
solutions able to tackle them.

Formal verification techniques, including model checking, can be used to
analyse properties over such systems but require the existence of system models
(labelled transition systems, variants of automata, Markov-based models, and
so on) which can be checked against properties of interest written in a suitable
temporal logic (LTL, CTL, timed/stochastic extensions, etc). Given a system
model, model checking explores exhaustively all possible states in the model (ei-
ther explicitly or implicitly) to find executions that violate certain constraints or
conversely satisfy certain properties, and if the approach permits, within certain
timed bounds and probabilities. Despite the benefits of using logic and formal
techniques for finding bugs in the hardware and software industries, it remains
challenging in practice: techniques often do not scale, and system behavioural
models may be incomplete or poorly understood.

By contrast, there are many complex problems in modern systems that can
be encoded in first-order logic and benefit from the use of efficient SMT solvers:
? This work has been supported by the Austrian Funding Council under FWF Meitner
M-3338-N.

2 J.K.F. Bowles

finding design errors in the logical functioning of modern digital electronic chips;
solving scheduling and planning problems; validating cyber-physical systems;
generating test inputs for safety-critical embedded software; detecting security
vulnerabilities through an SMT-based technique called Automatic Exploit Gen-
eration [1]; amongst many others.

In this paper, we take the formalisation of (parts of) models of computation as
sets of constraints given in first-order logic and enriched with parameters (e.g., an
integer variable x representing a measure in the context of the computation), to
search for executions that satisfy particular properties. More concretely, we use
SMT solvers to search within models of computation for executions that optimise
a given parameter (e.g., maximise x) whilst always satisfying a certain property
(e.g., a boolean variable that must always be true). Our models of computation
are abstractions that can be extracted from specifications, processes, code and/or
data depending on the application. The flexible and scalable nature of SMT
solvers such as Z3 [23] make them a suitable choice in practice.

We envisage an approach which reflects on how to understand the obtained
optimal computation (trace of execution aka solution) given by the solver, whether
there are several solutions that should be considered and whether a notion of
distance can help to characterise and explain them, be used to select a preferred
solution, and so on. This paper presents the background, context and a practical
problem for our envisioned approach.

2 Background

A Boolean satisfiability problem, or SAT for short, is the problem of determin-
ing whether there is an assignment for all variables in a propositional formula
such that the formula evaluates to true, that is, the formula is satisfiable. Many
problems can be formulated in this way and are solved very efficiently by modern
SAT solvers. Furthermore, modern SAT solvers have become core technology of
many model checkers and are particularly suited to prove invariants as well as
reachability properties through what is known as bounded model checking [4] and
further enhanced through powerful approaches such as k-induction which, much
like mathematical induction, use induction to increase the depth of the bound
[14]. Efficient modern SAT solvers (and SMT solvers) are expected to continue
to contribute to essential redevelopments of a new generation of model checkers
which scale better and can handle infinite-state models.

Some problems require more expressive logics, such as first-order or higher-
order logics, and include non-Boolean variables, functions and predicate symbols
and quantifiers. To keep such problems decidable, it is usually necessary to con-
strain the interpretations of the functions and/or predicate symbols. This means
that we assume some logical background theory (e.g., theory of equality, of inte-
ger numbers, of real numbers, and so on), and we are concerned with satisfiability
modulo theories (SMT) [2, 3], that is, determining the satisfiability of a formula
ϕ with respect to an interpretation in a given theory T . To determine the sat-
isfiability of formulae, SMT solvers make use of efficient reasoning techniques

Towards a Flexible Approach for Understanding and Comparing Traces 3

specific to the selected theory T . SMT solvers are particularly powerful because
they can handle and combine many different kinds of theories, and can also
be extended to include new theories to deal with new application domains. In
addition, the standardisation efforts of SMT-LIB3 have contributed to driving
progress in SMT-based technology further.

Searching for traces of execution involves the use of a solver. Introducing
non-Boolean variables, functions, predicate symbols and quantifiers, forces us
to go beyond SAT solvers, and use SMT solvers for finding solutions which
optimise parameters of interest. There is a wide range of possibilities for solvers
that can be used to solve constraints involving non-Boolean variables, including,
among others, Minion[16], FlatZinc and MiniZinc[25]. Modern SMT solvers such
as Z3 allow the inclusion of heuristics also known as strategies [22]. In addition,
when reasoning about the model of choice it can be useful to use a theorem
prover Isabelle [27] to generate SMT-Lib code and link it to solvers such as
Z3 and CVC5. For the underlying chosen model, we need to define notions of
computation distance and explainability. Reasoning on those may be facilitated
through the use of a theorem prover.

For a given abstraction from code, we may want to find executions that are
computationally more efficient, have the highest degree of concurrency or con-
sume less energy, using criteria such as performance, time, energy, efficacy, cost,
and so on. We assume that statements in code may have annotated measures
which can be used to search for execution runs that are optimal wrt those mea-
sures. The ability to evaluate and compare different optimal computations for
different purposes can be used to gain further insights on the abstraction itself.

Let us consider the setting of improving treatment plans for patients with
multiple chronic conditions where it is important to be certain that medications
prescribed for different purposes do not lead to adverse reactions or undesired
side effects: is there a better combination of medications that avoids harmful
adverse reactions and improves the quality of life of the patient? Or even more
fundamentally: what is the difference between two solutions provided by a solver
in terms of treatment efficacy or side effects? It may be important to understand
the difference between proposed treatments in cases where certain medications
may not be available.

3 Approach

3.1 Overview

The vision of our approach is sketched in Fig. 1. For a given input, here seen as
one or more models of computation (e.g., event structures), converted into an
SMT encoding (step 1) and passed to an SMT solver with arithmetic optimi-
sation such as Z3 (step 2), we obtain (if solutions exist) one optimal solution
(computation or trace of execution) with respect to the parameters of interest,
and through a number of calls to the SMT solver (step 3), this may lead to one
or more solutions: sol1, sol2, sol3, etc. Our earlier work (cf. [8, 10, 9, 11]) offers
3 http://smtlib.org

4 J.K.F. Bowles

Fig. 1: Overview of the approach

partial contributions to steps 1 , 2 and 3 , but needs to be extended to address
preferences and additional information more accurately in step 1 . In our earlier
work, we have also used the theorem prover Isabelle [27] to generate SMT code
automatically and provide additional aid in proving the correctness of properties
as needed.

Challenges arise when there are no models available from which we can derive
a formal representation or only partial information is available. Step 4 addresses
this by enabling the inference of additional information from data, such as ad-
ditional structures/paths, probabilities associated to different choices, etc. One
option here is to follow a similar approach to CP-nets [5] where preferences are
represented as a partial order with added priorities and optimisation criteria,
but adapted to our richer event structures, and combine them with the remain-
ing models when obtaining the SMT encoding (step 1). The advantage of our
approach is that it will use the same abstract representation to capture different
aspects and sources of information required for the search.

To create practical solutions of real value, we need to be able to explain
generated solutions as well as their difference. Step 5 deals with the formalisa-
tion and understanding of differences between solutions, and how solutions are
explained in step 6 . Of added value is also to be able to evaluate how good
a particular solution may be in the overall spectrum of possible solutions (step
7), making use of the notion of solution distance from step 5 . Concerning step
6 , we have explored the use of argumentation theory for explaining medica-
tion choices in[29, 30]. Instead we may take a simpler approach and focus on

Towards a Flexible Approach for Understanding and Comparing Traces 5

the first-order logical statements associated to paths obtained and notions of
computation distance.

3.2 Models of Computation

The model of computation we use is a labelled (prime) event structure [32], or
event structure for short. Event structures have been widely used and studied in
the literature, and have been used to give a true-concurrent semantics to process
calculi such as CCS, CSP, SCCS and ACP (e.g., [31]). The advantages of prime
event structures include their underlying simplicity and how they naturally de-
scribe fundamental notions present in behavioural models and code including
sequential, parallel and iterative behaviour (or the unfoldings thereof) as well
as nondeterminism (cf. [19, 6]), and are hence our model of choice. Event struc-
tures also have well-defined composition operators and can be used to represent
unfoldings of graphs and models such as Petri nets (cf. e.g., [26]).

To use event structures as a model capturing the behaviour of a process,
piece of code or component, we add labels to the events, associating the events to
actions that have to be performed, conditions that have to be checked, statements
that have to be executed, and so on. Further enriching an event structure with
labelling functions gives us a mechanism to introduce further measures which can
reflect properties of interest for our computations. However, existing composition
mechanisms for event structures ignore labels and are hence inadequate for our
use here. By converting our problem to an SMT problem, we circumvent this
and we can search for the computations that satisfy our criteria without the
need to create a composite model.

The formal definition of an event structure below is taken from [19].

Definition 1. An event structure is a triple E = (Ev,→∗,#) where Ev is a
set of events and →∗,# ⊆ Ev × Ev are binary relations called causality and
conflict, respectively. Causality →∗ is a partial order. Conflict # is symmetric
and irreflexive, and propagates over causality, i.e., e#e

′ ∧ e′ →∗ e
′′ ⇒ e#e

′′

for all e, e
′
, e

′′ ∈ Ev. Two events e, e
′ ∈ Ev are concurrent, e co e

′
iff ¬(e →∗

e
′ ∨ e

′ →∗ e ∨ e#e
′
). C ⊆ Ev is a configuration iff (1) C is conflict-free:

∀e, e′ ∈ C¬(e#e′) and (2) downward-closed: e ∈ C and e′ →∗ e implies e′ ∈ C.

An event structure consists of a set of event occurrences together with binary
relations for expressing causal dependency (called causality) and nondeterminism
(called conflict). The causality relation implies a (partial) order among event
occurrences, while the conflict relation expresses how the occurrence of certain
events excludes the occurrence of others. From the two relations defined over
the set of events, a further relation is derived, namely the concurrency relation
co. Two events are concurrent if and only if they are completely unrelated, i.e.,
neither related by causality nor by conflict. We assume a discrete structure
which guarantees a finite model and is sufficient for our purposes, that is, there
are always only a finite number of causally related predecessors to an event e.
This is referred to as the local configuration of e and written ↓e. Discreteness is
important here because computations always have a starting point. Immediate

6 J.K.F. Bowles

causality between two events e and e′ is written e → e′ and indicates that no
other event can occur in between. An event can have one or more immediate
successors. Finally, a configuration C as defined above (downwards-closed and
conflict-free) is a trace of execution if and only if it is maximal.

Depending on what interpretation we want to give to an event structure, we
define a set of labels, and a labelling function is a partial function that associates
subsets of labels to events. We can define several labelling functions to add
different measures and parameters of interest. We use LES to refer to labelled
event structures in the following, and we assume that the labelling functions are
defined for different concrete problems as needed.

Fig. 2: Three event structures with labels shown.

Consider the three structures shown in Fig. 2 with events given as e0, e1, . . . ,
g0, g1, . . . , f0, f1, . . . , explicit immediate causality shown (e.g., e0 → e1), direct
conflict between events at the same level (e.g., e2#e3), and so on. In this example
events g2 and g3 are concurrent. Additional labels (given in different colours) are
shown next to the events. Let p1 and p2 indicate conditions associated to events
e2 and e3 respectively, where each condition has to hold for the corresponding
event to occur; priorities are given next to events as natural numbers; and addi-
tional actions (ma1,mb1, etc) are shown as well. The search across these three
very simple models can give us 8 possible traces of execution, but different traces
may be required under different conditions. Furthermore, we may have additional
information that tells us that certain actions should not be done together (e.g.,
ma1 and mc2), even though they are associated to events with higher priority.

Additional information, such as actions that should not be done together,
preferences over the use of certain resources, probabilistic information contained
in data, etc, can be added to the solver as well. To keep the overall formalism
cohesive, we will represent this information as a LES. We will explore the models
of preferences defined for CP-nets [5] for our context here, and how these can be
adapted to LES. In CP-nets preferences are represented as a partial order with
added priorities and optimisation criteria. Since our LES contains partial orders
(in the binary relation causality), the approach taken will be a natural extension
which needs to incorporate conflict and concurrency as well. The process of
generating SMT encodings from our LES-preferences will hence be the same.

Towards a Flexible Approach for Understanding and Comparing Traces 7

3.3 Computation Distance, Comparison and Evaluation

An SMT solver will generate one optimal solution with respect to the parameter
we are trying to optimise. In some cases there may be more than one solu-
tion for the same optimal value. In these circumstances, it is worth to be able
to characterise the distance between the different solutions/computations with
the same optimal value, between an optimal solution and a second best, or be-
tween two solutions that optimise different parameters. In our case solutions are
traces of execution across our input structures. One approach to consider for
the distance between two solutions can be how many changes have to be made
from one solution to reach the other. The notion of Levenshtein distance [20]
for strings, which measures the number of changes between two strings required
to make them equal, may be useful when comparing traces of executions. Since
sequences of tasks representing a process can been seen as graphs, graph-based
edit-distances-algorithms, which extend Levenshtein distance, may be more ap-
propriate [15]. A further useful notion for our model is that of a CP-net distance
as described in [21] which is based on distances between partial orders. We expect
the later notion to be particularly relevant because event structure causality is
a partial order. Whilst causality is one of the relations contained in event struc-
tures, we also need to consider conflict and concurrency as other relations that
may have an impact on our possible distance metrics, as well as any information
contained in the event labels (depending on which criteria is being used in the
search). Indeed, several notions of computation distance may be necessary.

For instance, when observing the models in Fig. 2, the path that leads to
e5 is very similar to the path that leads to e6, and the difference is contained
in the labels: the choice of e6 implies a further action ma5 not taken in e5.
Further information is needed to understand and explain the difference that this
additional action may entail.

We can capture the steps taken to go between solutions (traces of execution),
and this will allow us to compare a given trace with an optimal solution obtained
by the solver with respect to a given criteria, or for two solutions for different
criteria to be compared. A further search could be used to get the sequence of
steps to go between solutions, and this could be represented as a logical formula
not just to formalise their distance but to explore how to justify their difference.

3.4 Explanations

In our case, the solver will return one or more possible solutions (if any exists)
for different criteria we may wish to optimise. In addition to understanding why
two traces may be different as given by the notion of distance, we also need to
be able to explain a computation on its own which involves justifying the events
in the trace as well as any inherent concurrency.

We presented an argumentation model to justify the choices on a clinical
pathway, as identified by the SMT solver for multimorbid patients in [30]. While
the solver only encoded drug information in the optimal path, we can consider
all additional information available in our models (and formulated into our SMT

8 J.K.F. Bowles

encoding in step 1) to justify an event in a path. Even though our earlier work
used simple pharmaceutical graphs in the medical context (where nodes were
associated to drugs prescribed for treatment in different stages of the condition),
further information can be used if available. In addition this approach can be
generalised to explanations of similar structures such as our LES. To explain
a given trace, we can extract from the event labels all the information that
describes that trace and formulate it in first-order logic. Explanations can focus
on particular parameters to keep the explanations (their associated formulae)
more succinct.

We note that we also need notions of trace equivalence with respect to the
arguments (parameters) used to explain different computations. In other words,
two computations may be different (the events and relations are different) but
their associated explanations can be reduced to the same first-order logical state-
ment and can hence be treated as equivalent under the arguments used. We want
to explore the significance of such equivalence notions in practice and we will
be inspired by reflections on equivalence such as those given in [28] concerning
equivalences between constraint satisfaction problems.

3.5 A Clinical Context

Clinical guidelines are evidence-based care plans which detail the essential steps
to be followed when caring for patients with a specific clinical problem and play
an important role in improving healthcare for people with long-term conditions.
To think about guidelines from a computer science point of view, we can see them
as process descriptions, behavioural models, graphs, etc. There are guidelines
for managing the treatment for chronic diseases such as diabetes, cardiovascular
disease, chronic kidney disease, cancer, chronic obstructive pulmonary disease,
and so on. Guidelines include recommendations for the medications (or group
of medications) to be given at different stages of the treatment plan as well as
alternatives, and are revised regularly.

When patients have multimorbidity, they are implicitly following several clin-
ical guidelines for their individual diseases in parallel. Clinical guidelines offer
treatment recommendations for chronic conditions, but often do not take into
account the possible presence of comorbidities. Concretely, for patients with
multimorbidity current guideline recommendations rapidly lead to polypharmacy
(i.e., the prescribing of 5 or more medications) without providing guidance on
how best to prioritise recommendations [17]. The risk of medication harm is
exacerbated, that is, it is possible for patients to take medications that lead to
adverse drug reactions, or for particular combinations of drugs to be less effective
if administered at the same time.

In earlier work, we explored the combination of formal verification techniques,
such as constraint solvers and theorem provers, to identify steps in different
guidelines that cause problems if carried out together (e.g., two drugs prescribed
for different conditions may interact, food may interact with a drug, health
recommendations may contradict each other) whilst at the same time find the
preferred alternative according to a certain criteria (e.g., drug efficacy, prevalent

Towards a Flexible Approach for Understanding and Comparing Traces 9

disease, patient allergies, preferences, etc). In the initial proposed approach [18],
we introduced medication effectiveness (given by drug companies) as the only
criteria for finding the best solution. The approach associated a positive score to
each medication capturing effectiveness, and a negative score to pairs of medica-
tions with known adverse reactions. This score is used by an SMT solver [24] to
find the ideal solution with the highest possible score. The approach was illus-
trated with an example of a patient with five comorbidities from a much cited
medical paper [13], and refined in subsequent work establishing an algorithm
that searches for optimal medication combinations across treatments maximis-
ing medication efficacy, minimising adverse reactions, avoiding intolerances and
undesired side effects [12, 8, 10, 7]. At present there is no attempt at deriving
explanations for the solutions obtained or a justification as to how different so-
lutions compare; patient preferences are also not modelled to a great extent; and
side-effect exploration is currently restricted to a Boolean characterisation.

Recall the models shown in Fig. 2, and assume that they denote the (unfold-
ings of) treatments (derived from guidelines) for three conditions that a patient
may be undergoing. Each circle is an event denoting the occurrence of something
(an action, a clinical examination, taking a medication, etc). The initial events
(e0, g0 and f0) indicate the diagnosis of the corresponding disease. At times
there may be a choice between treatment options (e.g., e2 and e3). We indicate
in red the occurrence associated to an event. Some occurrences have conditions
on them, for instance p1 has to hold for e2 to be able to occur; x ≥ 40 must hold
at for event f2 for medication mc1 to be prescribed.

Assume that we know that the occurrence of ma1 conflicts with mc2, and ma2
conflicts with mb2 (domain knowledge). In order to find our optimal paths, we
need to know in addition how effective drugs are considered to be when used for
a condition and reported side effects. To simplify the presentation here, assume
here that a drug is only used in the context of one treatment. Drug effective-
ness, side effects and likelihood of side effects are captured for our example in
Table 1. In addition, drugs are known to interact with others. Sometimes ad-

Table 1: Drug Effectiveness and Side Effects.

Drug Effectiveness Side Effects Likelihood
ma1 ve1 1000 s0 rare (≤ 20%)
ma4 ve4 900 s1 common (≥ 60%)

s2 rare (≤ 20%)
ma5 ve5 600 s3 very common (≥ 80%)

ditional drugs are added to compensate the interactions as shown in Table 2.
We want to combine the diagrams of Fig. 2 in a way that the known underlying
conflicts are taken into account. To do so, we need to search valid paths across
the three structures that avoid given drug interactions and/or side effects as
desired. Intuitively, an optimal solution which focuses on maximising drug effec-

10 J.K.F. Bowles

Table 2: Drug Interactions.

Drugs Conflict Level Score
ma1, mc2 severe v1 -2000
ma1, ma5, mc2 mild v2 -600
ma2, mb2 severe v3 -1800

tiveness and minimising interaction score, would give us the execution path that
includes events e6 and f2. If a patient prefers to avoid side effect s3 then the
optimal solution would include event e4 instead which excludes the medication
more likely going to contribute to the side effect.

4 Concluding Remarks

We presented a vision investigating the use of logic as a unifying tool for mod-
elling, reasoning, searching and explaining optimal traces of execution. Under-
standing a notion of distance between traces of execution (with the same optimal
value or similar) can be important to decide on what solution to choose, what
trade-offs may need to be made as a consequence, and so on. We are currently
working towards the formalisation of different notions of distance in order to
be able to: compare arbitrary solutions; evaluate a particular execution with re-
spect to the optimal solution; and explain solutions. In other words, the idea is
to explore how the interplay between a distance measure and logic can be used
to explain different solutions adding domain knowledge (e.g., side effects, patient
preferences) to clarify them.

References

1. Avgerinos, T., Cha, S.K., Rebert, A., Schwartz, E.J., Woo, M., Brumley, D.: Au-
tomatic exploit generation. Communications of the ACM 57, 74–84 (2014)

2. Barrett, C., Sebastiani, R., Seshia, S., Tinelli, C.: Satisfiability modulo theories.
In: Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.) Handbook of Sat-
isfiability, Frontiers in Artificial Intelligence and Applications, vol. 185, chap. 26,
pp. 825–885. IOS Press (February 2009)

3. Barrett, C., Tinelli, C.: Satisfiability modulo theories. In: Clarke, E., Henzinger, T.,
Veith, H., Bloem, R. (eds.) Handbook of Model Checking, chap. 11, pp. 305–344.
Springer (2018)

4. Biere, A., Kröning, D.: Sat-based model checking. In: Clarke, E., Henzinger, T.,
Veith, H., Bloem, R. (eds.) Handbook of Model Checking, chap. 10, pp. 277–304.
Springer (2018)

5. Boutilier, C., Brafman, R., Domshlak, C., Hoos, H.H., Poole, D.: CP-nets: A Tool
for Representing and Reasoning with Conditional Ceteris Paribus Preference State-
ments. Journal of Artificial Intelligence Research 21, 135–191 (2004)

6. Bowles, J.: Decomposing Interactions. In: Johnson, M., Vene, V. (eds.) Algebraic
Methodology and Software Technology: 11th International Conference, Kuressaare,
Estonia, 5-8 July 2006. LNCS, vol. 4019, pp. 189–203. Springer (2006)

Towards a Flexible Approach for Understanding and Comparing Traces 11

7. Bowles, J., Caminati, M.: A flexible approach for finding optimal paths with mini-
mal conflicts. In: International Conference on Formal Engineering Methods. LNCS,
vol. 10610, pp. 209–225. Springer (2017)

8. Bowles, J., Caminati, M.: Balancing prescriptions with constraint solvers. In: Liò,
P., Zuliani, P. (eds.) Automated Reasoning for Systems Biology and Medicine,
Computational Biology, vol. 30, pp. 243–267. Springer (2019)

9. Bowles, J., Caminati, M.: An integrated approach to a combinatorial optimisation
problem. In: Ahrendt, W., Tarifa, S.L.T. (eds.) Integrated Formal Methods - 15th
International Conference, IFM 2019, Bergen, Norway, December 2-6, 2019, Pro-
ceedings. Lecture Notes in Computer Science, vol. 11918, pp. 284–302. Springer
(2019)

10. Bowles, J., Caminati, M.: Correct composition in the presence of behavioural con-
flicts and dephasing. Sci. Comput. Program. 185 (2020)

11. Bowles, J., Caminati, M.: A formally verified SMT approach to true concurrency.
In: Calimeri, F., Perri, S., Zumpano, E. (eds.) Proceedings of the 35th Italian
Conference on Computational Logic - CILC 2020, Rende, Italy, October 13-15,
2020. CEUR Workshop Proceedings, vol. 2710, pp. 357–371. CEUR-WS.org (2020)

12. Bowles, J., Caminati, M., Cha, S., Mendoza, J.: A framework for automated conflict
detection and resolution in medical guidelines. Science of Computer Programming
182, 42–63 (2019)

13. Boyd, C., Darer, J., Boult, C., Fried, L., Boult, L., Wu, A.: Clinical practice guide-
lines and quality of care for older patients with multiple comorbid diseases: impli-
cations for pay for performance. JAMA 294(6), 716–24 (2005)

14. Donaldson, A., Haller, L., Kroening, D.: Strengthening induction-based race check-
ing with lightweight static analysis. In: VMCAI. LNCS, vol. 6538, pp. 169–183.
Springer (2011)

15. Gao, X., Xiao, B., Tao, D., Li, X.: A survey of graph edit distance. Pattern Analysis
and Applications 13, 113–129 (2010)

16. Gent, I., Jefferson, C., Miguel, I.: Minion: A fast scalable constraint solver. In:
ECAI?06. pp. 98–102. IOS Press (2006)

17. Hughes, L., McMurdo, M.E.T., Guthrie, B.: Guidelines for people not for diseases:
the challenges of applying uk clinical guidelines to people with multimorbidity. Age
and Ageing 42, 62–69 (2013)

18. Kovalov, A., Bowles, J.: Avoiding medication conflicts for patients with multimor-
bidities. In: 12th International Conference on Integrated Formal Methods (iFM
2016). LNCS, vol. 9681, pp. 376–392. Springer (2016)

19. Küster-Filipe, J.: Modelling concurrent interactions. Theoretical Computer Science
351, 203–220 (2006)

20. Levenshtein, V.: Binary codes capable of correcting deletions, insertions and rever-
sals. Soviet Physics-Doklady 10, 707–710 (February 1966)

21. Loreggia, A., Mattei, N., Rossi, F., Venable, K.B.: On the distance between CP-
nets. In: Proc. of the 17th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2018). pp. 955–963. ACM (2018)

22. Moura, L., Passmore, G.: The strategy challenge in SMT solving. In: Automated
Reasoning and Mathematics. LNCS, vol. 7788, pp. 15–44. Springer (2013)

23. Moura, L.D., Bjørner, N.: Z3: An efficient smt solver. In: TACAS 2008. LNCS,
vol. 4963, pp. 337–340. Springer (2008)

24. Moura, L.D., Bjørner, N.: Satisfiability modulo theories: Introduction and appli-
cations. Commun. ACM 54(9), 69–77 (2011)

12 J.K.F. Bowles

25. Nethercote, N., Stuckey, P., Becket, R., Brand, S., Duck, G., Tack, G.: Minizinc:
Towards a standard CP modelling language. In: PPCP’07. pp. 529–543. Springer
(2007)

26. Nielsen, M., Plotkin, G., Winskel, G.: Petri nets, event structures and domains,
part i. TCS 13, 85–108 (1981)

27. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, LNCS, vol. 2283. Springer (2002)

28. Rossi, F., Petrie, C., Dhar, V.: On the equivalence of constraint satisfaction prob-
lems. Tech. Rep. ACT-AI-222-89, MCC Technical Report (December 1989)

29. Shaheen, Q., Toniolo, A., Bowles, J.: Dialogue games for explaining medication
choices. In: Gutiérrez-Basulto, V., Kliegr, T., Soylu, A., Giese, M., Roman, D.
(eds.) Rules and Reasoning - 4th International Joint Conference, RuleML+RR
2020, Oslo, Norway, June 29 - July 1, 2020, Proceedings. Lecture Notes in Com-
puter Science, vol. 12173, pp. 97–111. Springer (2020)

30. Shaheen, Q., Toniolo, A., Bowles, J.: Argumentation-based explanations of mul-
timorbidity treatment plans. In: PRIMA 2020: Principles and Practice of Multi-
Agent Systems. LNCS, vol. 12568. Springer (2021)

31. Winskel, G.: Event structure semantics for CCS and related languages. In: Nielsen,
M., Schmidt, E. (eds.) Automata, Languages, and Programming. LNCS, vol. 140,
pp. 561–576. Springer (1982)

32. Winskel, G., Nielsen, M.: Models for Concurrency. In: Abramsky, S., Gabbay, D.,
Maibaum, T. (eds.) Handbook of Logic in Computer Science, Vol. 4, Semantic
Modelling, pp. 1–148. Oxford Science Publications (1995)

